| Jeu. 27 | Ven. 28 | |
|
09:00
10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
|
9:30 - 9:45 (15min)
Introduction
9:45 - 11:00 (1h15)
Deep Learning for Structural Data
› Rationalizing machine learning on biomolecules structures, applications to RNA therapeutics and PPI predictions
- Vincent Mallet, Centre de Bioinformatique
09:45-10:30 (45min)
› DLScaff: Deep Learning for Hi-C Assembly Correction and Scaffolding
- Alexis Mergez, Unité de Mathématiques et Informatique Appliquées de Toulouse
10:30-11:00 (30min)
11:00 - 11:30 (30min)
Pause café
11:30 - 12:30 (1h)
Interpretability and Transfer Learning in Transcriptomics
› A Biologically Interpretable Approach To Identify New Therapeutics Targets Using Deep Neural Networks
- Charlotte Job, Informatique, BioInformatique, Systèmes Complexes
11:30-12:00 (30min)
› Adversarial Domain Adaptation Enables Knowledge Transfer Across RNA-Seq Datasets
- Kevin DRADJAT, Informatique, BioInformatique, Systèmes Complexes (IBISC)
12:00-12:30 (30min)
12:30 - 14:15 (1h45)
Déjeuner + Poster session
14:15 - 15:30 (1h15)
Phylogenetics and Phylodynamics
› Estimating factors of epidemic spread with deep learning-enabled phylodynamics
- Anna Zhukova, Institut de biologie de l'ENS Paris, Institut Pasteur
14:15-15:00 (45min)
› Graph Neural Networks for Likelihood-Free Inference in Diversification Models
- Amélie Leroy, Biologie Computationnelle, Quantitative et Synthétique, Modélisation de la Biologie
15:00-15:30 (30min)
15:30 - 16:00 (30min)
Pause café
16:00 - 16:30 (30min)
Phylogenetics and Phylodynamics
› Likelihood-free inference of phylogenetic tree posterior distributions
- Luc Blassel, Biologie Computationnelle, Quantitative et Synthétique [Paris] (ex LCQB)
16:00-16:30 (30min)
16:30 - 17:00 (30min)
Representation Learning in (Epi)genomics
› Spreading of methylation of transposable elements in A.Thaliana
- Ekaterina Antonenko, CBIO-Centre for Computational Biology, U1331, Institut Curie, PSL-Research University
16:30-17:00 (30min)
17:00 - 17:30 (30min)
Closing remarks
|
9:00 - 9:10 (10min)
Introduction
Raphael Mourad
9:10 - 10:00 (50min)
LLM en métagénomique
Jean-Daniel Zucker
10:00 - 10:20 (20min)
CRE en génomique des plantes
Marie-Laure Martin and Sylvie Coursol
10:20 - 10:40 (20min)
Deep learning pour la génomique des plantes
Mikael Lucas
10:20 - 11:40 (1h20)
Deep learning pour la génomique des animaux d’élevages
Raphaël Mourad
10:40 - 11:00 (20min)
Pause café
11:00 - 11:20 (20min)
Retour sur Evo2
Guillaume Gautreau
11:40 - 12:00 (20min)
Modèle fondation multiéchelles
Jérémie Kalfon
12:00 - 12:20 (20min)
Deep learning pour le génome 3D
Thomas Faraut
12:30 - 13:30 (1h)
Déjeuner
|